skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Seong-Han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the physical description of photonic lattices, leaky-mode resonance and bound states in the continuum are central concepts. Understanding of their existence conditions and dependence on lattice parameters is of fundamental interest. Primary leaky-wave effects are associated with the second stop band at the photonic lattice Γ point. The pertinent band gap is defined by the frequency difference between the leaky-mode band edge and the bound-state edge. This paper address the polarization properties of the band gaps resident in laterally periodic one-dimensional photonic lattices. We show that the band gaps pertinent to TM and TE leaky modes exhibit significantly differentiated evolution as the lattice parameters vary. This is because the TM band gap is governed by a surface effect due to the discontinuity of the dielectric constant at the interfaces of the photonic lattice as well as by a Bragg effect due to the periodic in-plane dielectric constant modulation. We find that when the lattice is thin (thick), the surface (Bragg) effect dominates the Bragg (surface) effect in the formation of the TM band. This leads to complex TM band dynamics with multiple band closures possible under parametric variation. In complete contrast, the TE band gap is governed only by the Bragg effect thus exhibiting simpler band dynamics. This research elucidates the important effect of polarization on resonant leaky-mode band dynamics whose explanation has heretofore not been available. 
    more » « less